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Abstract-A method is proposed for determination of the position-gradient tensor from conventional strain 
measurements. The position-gradient tensor can be multiplicatively decomposed into two components, left 
stretch and rotation tensors. The former is readily supplied by field strain data whereas the latter is generally 
unknown in nature. In order to determine the position-gradient tensor using strain data, it is assumed that 
structures within a shear zone are symmetric about the plane common to the transport direction and the pole to 
the shear zone, or alternatively, that the shear strain in the direction parallel to the pole to the shear zone on the 
plane normal to the transport direction in a parallel-sided shear zone is negligible. With these assumptions, the 
position-gradient tensor is fully determined from the attitude and principal ratios of the strain ellipsoid 
determined from field data. This method has been applied to the strain data from deformed fragments in a 
succession of Late Triassic volcanic breccias abutting a large strike-slip shear zone in north-central British 
Columbia. The resulting position-gradient tensor is then used to constrain the displacement across the shear 
zone, suggesting 39% shortening normal to, and dextral displacement of about 1700 m along, the shear zone. 

INTRODUCTION 

A complete description of the deformation of a coherent 
body excluding any bulk translation is supplied by the 
position-gradient tensor F (Means 1983, Passchier & 
Urai 1988, Passchier 1990, 1993, also known as the 
deformation-gradient tensor, Malvern 1969, Means 
1976, 1982, Sanderson 1982, deformation tensor, De 
Paor 1983, Means 1990, Treagus 1990, Hrouda 1992, or 
deformation matrix, Flinn 1979, Fossen & Tikoff 1993, 
Tikoff & Fossen 1993) which includes both a rigid-body 
rotation and a stretch tensor. Recent descriptions of the 
polar Mohr circle for two-dimensional situations which 
is derived from the F tensor (De Paor 1981, as refer- 
enced by Means 1982, 1983, Allison 1984, De Paor & 
Means 1984, Passchier & Urai 1988, Passchier 1990, 
1993, Treagus 1990, Simpson & De Paor 1993) have 
demonstrated the potential of this tensor for the study of 
the rotation of planar and linear features during defor- 
mation. 

Conventional strain data are generally used only to 
construct the inverse Cauchy tensor B-’ (cf. Malvern 
1969) with respect to the strained state, which does not 
include any rigid-body rotation and forms the basis for 
the familiar Mohr diagram in A’-y’ space. While this 
tensor and the associated Mohr diagram can provide 
information about changes in orientation between ele- 
ments, they provide no information about external ro- 
tations. For these, the F tensor is required. With the 
Mohr circle representation for the F tensor in polar 
space (De Paor 1981, Means 1982, 1983, Passchier & 
Urai 1988, Passchier 1990,1993, Treagus 1990, Simpson 
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& De Paor 1993), deformation and rotation of lines and 
planes at a given point can be determined, although the 
operations are cumbersome for three-dimensional prob- 
lems (Treagus 1990). 

Mohr diagrams for the F tensor have not been applied 
widely in field structural analysis because of difficulties 
in determination of the F tensor in nature. Determi- 
nation of the F tensor in two dimensions through the 
construction of the polar Mohr circle using deformed 
vein sets have previously been discussed (e.g. Passchier 
& Urai 1988, Passchier 1990). In this paper we discuss 
the determination of the F tensor in three dimensions 
based on strain data obtained from deformed volcanic 
fragments near a shear zone. We show that, with certain 
simplifying assumptions, the F tensor may readily be 
determined from conventional strain data. Once the F 
tensor is known, many other features of the shear zone, 
such as displacement across it, may be calculated. 

POSITION-GRADIENT TENSOR AND ITS POLAR 
DECOMPOSITION 

In this section we briefly review, first, the definitions 
of tensors, their physical meaning and application in 
characterising geological deformation, and secondly the 
polar decomposition of the position-gradient tensor. 

Considering a particle that moves from x(x1, x2, x3, to) 
in the unstrained state to x’(x;, xi, xi, t) in the strained 
state, the general relationship between x and x’ may be 
written: 

x; = 4(x1, $3 x3, t> 

x; = .$(x1, x2, x3, t) (1) 

4 = 4(x,, x2, x3, t) 
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where xi and xj (i = 1 to 3) represent the coordinates of 
the particle in the unstrained and strained states and t 
represents the time at which the strained state is 
achieved. If a vector dx, with length d.s before defor- 
mation is transformed by equation (1) to dx’ , with length 
Q’ after deformation, then we have 

extrema, giving the principal quadratic and reciprocal 
quadratic elongations. Both C and B-’ tensors are 
symmetric. 

or 

dx’ = Fdx (2a) 

dx = F-‘dx’ (2b) 

where F and F-’ are the position-gradient tensor and its 
inverse, and 

Generally, the F tensor can be decomposed into two 
components; a rigid-body rotation and a stretch tensor 
(e.g. Malvern 1969, De Paor 1983, Means 1983). In the 
case of finite strain, the F tensor can be multiplicatively 
decomposed into the product of two tensors, one of 
which represents rigid-body rotation while the other 
represents ‘pure’ deformation (e.g. Malvern 1969, De 
Paor 1983, Means 1983), since the deformation is no 
longer additive (cf. Malvern 1969). This decomposition 
is frequently called the polar decomposition (e.g. Mal- 
vern 1969, De Paor 1983, Means 1983) and may be 
written 

F = RU = VR (6) 

. (3) where R is rotation tensor, and U and V are symmetric 
right and left stretch tensors with respect to dx and dx’, 
respectively. Since they are the stretch tensors, U and V 
can be related to quadratic and reciprocal quadratic 
elongations as follows (see also equations 5a and 5b) 

If the F tensor in equation (3) is symmetric, it represents 
irrotational deformation. Otherwise, it represents ro- 
tational deformation. Since the deformation history or 
path of a deformation event is generally not known in 
nature, we can typically describe only the final configur- 
ation of geological structures and relate them to their 
initial configuration. Consequently, the F tensor is 
reduced to the functions which are dependent only on 
spatial coordinates. 

and 

x = (P’UP)(P’UP) = PTU’P = PTCP (74 

A’ = ((P’)?‘vP’)-‘((P’j%P’)_ 

= (p)r(V*)-‘pt = (Pr)TB-‘P’ (7b) 

Following equations (2a) and (2b), the length (ds’) of 
the vector dx’ after deformation can be written 

where both P and P’ are unit orthogonal matrices com- 
prising column vectors for three orthogonal directions 
with respect to dx and dx’, respectively. 

(&‘)* = (dx’)Tdx’ = (dx)TFTFdx = (dx)TCdx(4a) 

where FT is the transpose of F and FTF is the Green 
tensor C (also known as the right Cauchy-Green tensor, 
cf. Malvern 1969) with respect to the unstrained state 
(dx). Similarly, its initial length (&) is 

(d@ = (dx)Tdx = (dx’)T(F-‘)TF-‘dx’ 

= (dx’)TB-idx’ (4b) 

where F-i is the inverse of F and (F-‘)TF-l is the 
inverse of the Cauchy tensor B (also known as the left 
Cauchy-Green tensor, cf. Malvern 1969) with respect to 
the strained state (dx’). It is evident from equations (4a) 
and (4b) that quadratic elongation of any line in the 
direction of dx and reciprocal quadratic elongation of 
any line in the direction of dx’ can be expressed as 

The B-l, or V tensor (see equation 7b) is the one 
generally determined directly by routine measurements 
of strain markers (e.g. deformed oolites, concretions, 
reduction spots, lapilli, fossils, etc.; e.g. Ramsay 1967, 
Elliott 1970, Ramsay & Huber 1983) in the field, or 
indirectly by measuring magnetic fabric (anisotropy of 
magnetic susceptibility) of strained rocks (e.g. Owens 
1974, Rochette 1988, Henry 1990, Hrouda 1992,1993). 
Determination of the U tensor in strained rocks is almost 
impossible because the principal directions of the 
reciprocal strain ellipsoid (cf. Jaeger & Cook 1979, 
Ramsay & Huber 1983) in the unstrained state (dx) are 
generally not known in nature. Consequently, the right 
polar decomposition of the F tensor in equation (6) can 
rarely be applied to naturally deformed rocks and we 
concentrate here on the left polar decomposition. 

and 

il = nTCn (54 

1’ = (n’)TB-‘n’ (5b) 

The R tensor, an orthogonal matrix, rotates three 
orthogonal material lines at P to those that are parallel to 
the principal axes of V at P’; hence it performs rigid- 
body rotation of all lines and planes at a given point. The 
F tensor can be uniquely determined if both the rotation 
tensor R and left stretch tensor V are known. The R 
tensor is also difficult to determine in the field, unless the 
initial orientations of material lines that are parallel to 
the principal axes of the strain ellipsoid are known, or 
the deformation was irrotational (cf. Ramsay 1967, 
Ramsay & Graham 1970, Ramsay & Huber 1983, 

where n and n’ are unit column vectors for dx and dx’, 
respectively, and nT and nrT are transposes of n and n’. 
When n and n’ in equations (5a) and (5b) are parallel to 
the principal directions of the strain state with respect to 
dx and dx’ at a given point, C and B-’ tensors reach their Hrouda 1992). 
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In the next sections, we discuss how to determine the 
F tensor based on strain measurements and simple 
assumptions concerning the geometry of structure in a 
shear zone. 

DETERMINATION OF LEFT STRETCH TENSOR 

We have determined the inverse Cauchy tensor B-’ in 
a succession of Late Triassic volcanic breccias abutting a 
iarge strike-slip shear zone in north-central British Co- 
lumbia, These volcanic breccias of the Late Triassic 
Takla Group are compositionally heterogeneous and 
dominated by sub-angular or sub-rounded fragments of 
greenish to dark grey clinopyrox~ne and clinopyroxene- 
plagioclase porphyries, commonly in a porphyritic 
matrix with the same composition as the fragments. 
Progressive straining of the volcanic fragments is well 
exhibited in an area of about one square kilometre, 
bounded to the west by a dextral strike-slip shear zone 
trending approximately 350” and dipping 75” northeast 
in the McConnell Creek area, narth-central EI. C. (Fig. 
1). The shear zone is brittle-ductile in nature (Ramsay 
1980) and displays well-dinned S-C fabrics (Berth& et&. 
1979) and horizontal slickenlines marked by tremolite 
and calcite fibres, from which its shear sense and shear 
direction are inferred. The deformed fragments are 
clearly displayed on a variety of sections with different 
orientations, allowing detailed strain analysis. Accord- 
ing to the apparent aspect ratios and degree of develop- 
ment of foliation, the area has been divided into three 
domains in the direction normal to the north-northwest 
trending shear zone (Fig. 1). Domain I is about 600 m 

wide and lies in the east, about 300 m from the shear 
zone. Domain 2, about 200 m wide, lies between 
domains 1 and 3, and domain 3 is mainly within the shear 
zone with a width of about 100 m (Fig. 1). In domain 1, 
fragments in which phenocrysts or euhedral clinopyrox- 
ene and wispy pfagioclase are relatively fresh, are 
slightly deformed (Fig. 2a). Passing westward into 
domain 2 the strain is more intense, giving rise to a 
marked increase in the apparent aspect ratios of the 
deformed fragments (Fig. 2b) and local development of 
foliation. In domain 3, fragments are very strongly 
deformed (Fig. 2c), and foliation is penetrative where 
the phenocrysts of euhedral clinopyroxene have been 
completely replaced by chlorite and calcite. The defor- 
mation of the volcanic fragments is associated with 
motion along the NNW-trending shear zone, because 
the aspect ratios of the deformed fragments increase 
progressively moving from domain 1 to domain 3 (Figs. 
2a-c). No deformation occurs east of domain 1. 

More than ‘700 strained volcanic fragments were 
measured on 60 sections of different orientations in the 
three domains, of which 20 sections are from domain 1, 
32 sections from domain 2 and 8 sections from domain 3 
(Table 1). The mean sectional ellipses far all sections in 
each domain were then standardized with respect to 
each other (cf. Ramsay & Huber 1983) and used to 
calculate stretches along the intersections of each sec- 
tion with the three orthogonal planes: horizontal, east- 
west and north-south vertical (Zhang & Hynes 1994). In 
the analysis that follows, the sections in each domain are 
treated as if all sampled the same bulk strain ellipsoid, 
although there is probably a continuous change in bulk 
strain-ratio across each domain. In the ideal case, in 
which all fragments in each domain had the same eccen- 

Range ’ 

(L.-d 6km 

Fig, 1. Simplified structuraf map of the Johanson Lake area, north-central British Columbia [after Zhang t Hyncs 1994], 
showing the location of the studied shear zone. Insert shows division of domains along the shear zone. Shaded area: outcrop 
of deformed volcanic breccias; v: vegetation; broken line: approximate boundary between domains; Dl, D2 and D3; 

domains 1,2 and 3. 
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tricity, this analysis should provide three perfect ellipses 
in the three planes for each domain. The strain data 
within each domain lie approximately in the loci of the 
ellipses (see figs. 11-13 in Zhang & Hynes 1994), and 
only two data sets, from domains 1 and 3, respectively, 
depart significantly from this condition and were not 
used in further analyses. The least-squares best-fit strain 
ellipse (Erslev & Ge 1990) was then determined in each 
of the three planes (Table 1). Finally, components of the 
B-’ tensor (equation 7b) in geographic space were 
calculated using the strain ellipses in the three planes (cf. 
Ramsay 1967, Malvern 1969, Means 1976, Ramsay & 
Huber 1983), and eigenvalues and eigenvectors of the 
B-’ tensor were used to determine the axial ratios and 
directions of the strain ellipsoid for each domain (Table 
1 and Fig. 3). Because only two-dimensional strain ratios 
are known, the values of the principal axes (1 + ei, where 
i = 1 to 3) of the strain ellipsoids (Table 1) have no 
physical meaning, but their ratios (a and b) can be 
determined. From the axial ratios a and b (Table l), it is 
clear that L-S fabrics are predominant in domains 1 and 
2 while L fabric characterizes domain 3. In addition, E 
values (where E = In[( 1 + ei)/( 1 + ea)]) of domains 1,2 
and 3 are equal to 1.39, 1.57 and 3.70, respectively and 
fall within the typical strain-anisotropy range of natu- 
rally deformed rocks (E is generally less than 4, cf. 
Pfiffner & Ramsay 1982, Hrouda 1993). 

In the following analysis, it is assumed that the vol- 
canic fragments experienced a constant volume defor- 
mation as features due to the volume change, such as 
pressure solution, are absent, and absolute values for 
the principal axes of the strain ellipsoid are given in 
Table 2. Here, we also define two coordinate systems: 
geographic and shear space. In geographic space, we 
take axis xg north horizontal, ys east horizontal and zg 
pointing to the centre of Earth. In shear space, axis x, is 
set parallel to the slickenlines on the shear surface of the 
footwall, pointing in the shear direction of the hanging 
wall, ys is normal to the shear surface pointing towards 
the hanging wall and z, is perpendicular to x, and y, lying 
in the shear surface (Fig. 4). Both coordinate systems 
are right-handed. 

As the deformation within each domain is treated as 
homogeneous, the general transformations (1) become 
linear coordinate transformations. Based on equation 
(6), the position-gradient tensor F can be decomposed 
into a left stretch and a rigid-body rotation tensor in 
shear space: 

(Z; $ ;;j 

where Fi, are independent of position. Furthermore, 
from equation (7b), the left stretch tensor Vii can be 
expressed as: 

The rotation tensor R, may be expanded, without loss 
of generality, into 

1 = 
i 

cosw, sinOz 0 

-sinw, COW, 0 

0 0 1 1 

= (PyP; 0 ( 
l+e, 0 0 

1 + e2 0 (P;yP: (9) 

0 0 i 1 + e3 

where 1 + ej is the ith principal stretch, PA comprises the 
principal directions of the strain ellipsoid in geographic 
space and Pi specifies the directions of the coordinate 
axes of shear space in geographic space. Since P;! and 1 + 
ei are known from the strain analysis (Fig. 3 and Table 2) 
and Pi is obtained from the attitudes of the slickenline 
and the shear zone (Fig. 3), the values of Vii are fully 
specified by this equation. The resulting V tensors for 
domains 1,2 and 3 are shown in equations lO(a-c). 

V(‘) = 0.2061 
i 

1.8027 0.2061 0.0780 

0.5015 -0.0803 

i 
(lOa) 

0.0780 -0.0803 1.1807 

V(2) = 

i 

1.8772 0.3396 -0.0218 

0.3396 0.4873 -0.0068 

1 
(lob) 

-0.0218 -0.0068 1.2510 

7.7193 2.5497 0.1942 

VC3) = 2.5497 1.0794 0.0732 

i i 
WC) 

0.1942 0.0732 0.5511 

DETERMINATION OF POSITION-GRADIENT 
TENSOR 

i 

cosoy 0 sinw, 1 0 0 

X 0 
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2. Deformed volcanic brcccia fragments along the shear zone. (a) from domain 1, pencil pointing southwest; (b) t 
lain 2, pencil pointing southeast; (c) from domain 3, pencil pointing southeast. All these three sections 

subhorizontal. 

‘ram 
arc 
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Table 1. Strain data from deformed volcanic fragments 

Domain Plane A B a C) 1 + ei Trend (“) Plunge (“) a b 4 nf 

1 NE 3.73 1.00 160.6 3.785 343.3 7.6 1.552 2.589 19 170 
EW 2.54 1.03 66.8 2.438 091.3 66.6 
NS 2.78 1.62 54.8 0.942 250.2 22.0 

2 NE 4.73 1.02 156.6 4.732 336.9 1.6 1.565 3.058 32 512 
EW 3.05 1.07 73.9 3.024 072.8 75.2 
NS 3.24 1.86 40.6 0.989 246.5 14.7 

3 NE 17.84 0.91 151.0 35.740 332.2 6.2 15.736 2.560 7 58 
EW 2.23 0.99 75.1 2.271 087.2 75.5 
NS 2.92 1.59 44.7 0.887 240.8 13.0 

Notes: NE, EW and NS: horizontal, east-west and north-south vertical plains; A and B: long and short 
axes of the least-squares best-fit strain ellipses in the above planes; Q: angle between long axis of the strain 
ellipse and coordinate axis (e.g. north, east and down in NE, EW and NS planes, respectively); 1 + e,, 
where i = l-3: values of long, intermediate and short axes of the strain ellipsoid; trend/plunge: direction of 
the corresponding axis of the strain ellipsoid; a = (1 + c,)/(l + Q); b = (1 + q)/(l + es); II,: number of 
sections used; rrr: number of fragments measured (see Zhang & Hynes 1994 for details). 
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Fig. 3. Stereographic plot of principal directions of the observed 
strain ellipsoids from domains 1, 2 and 3. Squares, triangles and 
circles: long, intermediate and short axes of the observed strain 
ellipsoids in the strained state (solid) and their corresponding material 
lines (unfilled) in the unstrained state (determined through unrotation 
by the R tensors in equation 16); S plane: shear plane; number: 
showing domain; grey circles: directions of the coordinate axes (x,, ys 
and 4) of shear space in Fig. 4. All stereograms are lower-hemisphere, 
equal area projections. The observed strain ellipsoids are symmetric 

about the x,-y, plane. 

(11) into (8), the relationships in equation (8) can be 
simplified to: 

Vxxcosw, - V,,sinw, V,,sinw, + Vxycosw, V,, 

= Vyxcosw, - V,,sinw, VyXsinw, + Vyycosw, Vyz ‘(12) 
II,cosw, - V,,sinw, V=sinw, + Vzycosw, V,, 

The symmetry of structures within a shear zone requires 
not only that the rotational angles w, and w,, equal zero 
but also that the shear components 

( 
V,,c0sw, - V,,sinw, V,,sinw, + Vxycosw, 0 

= Vyxcosw, - V,,sinw, Vy,sinw, + Vyycosw, 0 ‘(13) 

0 0 V,, 

Now we have 5 independent equations for 6 unknowns 
F,,, Fx,,, Fy*, F,,,,, F,, and oZ, and the components Fij are 
still indeterminate without other structural information. 
Below we discuss methods through which this other 
information may be supplied. 

General deformation 

As a simple working hypothesis, provided several 
positions on the strain path are known, and provided the 
strain path results from progressive increments of strain 
in response to constant kinematics, it may be possible to 
determine the F tensor through forward modelling, 
searching for the incremental tensor Fi whose character- 
istics best account for the observed points along the 
strain path. The requirement of a successful forward 
model is that it reproduces the strain path, as illustrated 
on strain diagrams like that of Fig. 5, and that both the 
orientations and values of the principal axes of the 
modelled strain ellipsoids correspond within reasonable 
limits to those actually observed. With a computer, such 
forward modelling, and the automatic searching for a 
viable solution, is a fairly straightforward procedure. 

The methods for calculating progressive strain paths 
have previously been discussed by a number of workers 
(e.g. Ramsay 1967, Ramberg 1975, Flinn 1979, Sander- 
son & Marchini 1984, Weijermars 1991, Fossen & Tikoff 
1993). .In our approach, the strain path is derived by 
successive multiplication by the incremental Fi tensor: 

F, = Fi; F, = F,Fi; F, = F2Fi; . . .; F, = F, _ ,Fi. (14) 

In the following analysis, only constant volume defor- 
mation is considered. 

Progressive irrotational strains for constant kinema- 
tics have been discussed (e.g. Ramsay 1967, Ramberg 
1975, Flinn 1979) and the strain paths in In a-ln b space 
are all straight lines (Ramsay 1967). For progressive 
rotational strain, all strain paths in In a-ln b space for any 
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Table 2. The observed and calculated strain ellipsoids 

Observed Calculated 
Domain 1 + ei Trend (“) Plunge (“) 1 + e; Trend (“) Plunge (“) d, (%) ai 0 

1 1.841 343.3 7.6 1.835 341.5 2.3 0.3 5.7 
1.186 091.3 66.6 1.181 080.0 75.0 0.4 9.2 
0.458 250.2 22.0 0.470 250.9 14.8 2.5 7.2 

2 1.956 336.9 1.6 1.956 337.4 3.3 0.0 1.8 
1.250 072.8 75.2 1.251 080.0 75.0 0.1 1.9 
0.409 246.5 14.7 0.409 246.5 14.6 0.0 0.1 

3 8.591 332.2 6.2 8.585 331.8 4.8 0.1 1.5 
0.546 087.2 75.5 0.551 080.0 75.0 1.0 1.9 
0.213 240.8 13.0 0.213 240.6 14.2 0.1 1.2 

Notes: the observed strain ellipsoids are determined using the sectional strain data in Table 1, 
whereas the calculated strain ellipsoids are derived using the F tensors in equation (15); 4 is the 
percentage of departure of the axis magnitude (i) of the calculated ellipsoid from that of the observed 
and ai is the angle between the axes (i) of the observed and calculated strain ellipsoids, where i = 1-3. 
Other abbreviations as for Table 1. 

motion of HW 

shear plane 

Fig. 4. Diagram showing the choice of coordinate system in shear 
space. x,, y, and z,: coordinate axes in shear space; HW: hanging wall. 

0 2 4 6 8 

In b 

Fig. 5. Plot of shapes of the strain ellipsoids. Solid circle, triangle and 
square: the observed strain ellipsoids from domains 1, 2 and 3, 
respectively; dots: the modelled strain ellipsoids: a and b: as for Table 
1, The strain ellipsoids of the first and every tenth strain increment are 

plotted for each strain path; number shows the strain path. 

Fi tensors are curved except those for plane strain even if 
the kinematics are constant. This is because the non- 
zero shear components Fxy and Fyx contribute to the 
values of 1 + ei, so that the simple relationship of a = bK, 

where K = ln[(l + e&(1 + ez)]/ln[(l + e&(1 + es)] (cf. 
Ramsay 1967), is no longer valid. 

Figure 5 shows the strain paths for progressive simple 
shear (path 1) and simple shear combined with (1) 
shortening along one axis (e.g. ys, z, and X, for paths 2,3 

Fig. 6. Stereographic plot of principal axes of the strain ellipsoids for 
path 3 (Fig. 5). The strain ellipsoids of the first and every fiftieth 
increment are plotted. Open square, triangle and circle: long, inter- 
mediate and short axes of the strain ellipsoid of the first incremental 
strain, respectively; pe: the prolate ellipsoid (at 114 incremental strain, 
Fig. 5); other symbols as for Fig. 3. Note that the modelled strain 
ellipsoids in this, and the following, figure are also symmetric about the 

x,--y, plane. 

and 4, respectively) and equal extension along the other 
two axes, (2) extension along one axis (e.g. xs, y, and z, 
for paths 5, 6 and 7, respectively) and equal shortening 
along the other two axes, and (3) unequal extension 
along all three axes (e.g. paths 8 and 9). The correspond- 
ing Fi tensors are given in the Appendix. With progres- 
sive strain, strain ellipsoids starting in the apparent 
flattening field (ln a < In b) change progressively toward 
oblate ellipsoids, giving rise to upward-convex strain 
paths (see paths 2, 4 and 8, Fig. 5), whereas those 
starting in the apparent constrictional field (ln u > In b) 

change progressively toward prolate ellipsoids, display- 
ing upward-concave strain paths (see paths 5, 6 and 9, 
Fig. 5). This is, however, not true for paths 3 and 7 (see 
also Fossen & Tikoff 1993), which characterize simple 
shear combined with equal extension along x, and y, and 
shortening along z, (equation A3) and with shortening 
along X, and ys and extension along z, (equation A7). 
The reason for this is that the shapes of the strain 
ellipsoids on path 3 before reaching perfect prolateness 
(Fig. 5) are governed mainly by the shear component Fxy 

(equation A3) as indicated by the fact that the axes of 1 
+ e3 lie in the x,-y, plane (Fig. 6; note that there is an 
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Fig. 7. Stereographic plot of principal axes of the strain ellipsoids for 
path 7 (Fig. 5); oe: the ablate ellipsoid (at 114 incremental strain, Fig. 

5); other symbols as for Fig. 6. 

8 

6 
m 
S 

4 

“0 2 4 6 8 10 

In b 
Fin. 8. Ln a vs In b plot of strain paths showing effect of the shear 
component Fyx on the-shapes of the paths. Paths 3&d 7 are the same as 
those in Fie. 5. F... = 0.0001.0.0006.0.0060 and 0.0604 for (a). (b). (c) 

v II \I _I .I 

and (d), respecticely; values of other components of F, are same as for 
paths 3 and 7 (equations A3 and A7), respectively. 

abrupt change of orientation of 1 + e3 when In b = 0), 
whereas subsequent ones are dominated by the stretch 
components F,,, F,,,, and F,, (equation A3), as the axes 
of 1 + e3 are parallel to z, (Fig. 6). Similarly, the shapes 
of strain ellipsoids on path 7 before reaching perfect 
oblateness (Fig. 5) are governed by FX,, (equation A7), 
whereas subsequent ones are dominated by F,,, F,,,, and 
Fzz (Fig. 7). 

The paths of Fig. 5 are representative of all the general 
styles of path that can be generated through progressive 
deformation under conditions of constant kinematics, 
although the paths can of course vary according to the 
values of Fii. Increasing the shear component FYX 
straightens the strain paths. For example, increasing FYX 
from 0 to FYX = FXY, moves the resulting strain paths 
from 3 and 7 in Fig. 5 progressively to 3d and 7d of Fig. 8, 
respectively, which are the straight lines characteristic of 
irrotational strain. Increasing FJF,, moves path 3 in 
Fig. 5 to paths 3a and 3b of Fig. 9. Decreasing the ratio 
changes path 3 in Fig. 5 to paths 3c and 3d of Fig. 9. 
16 ,I:*,-6 

8 

6 
m 
S 

4 

0 
0 2 4 6 8 10 

In b 
Fig. 9. Ln a vs In b plot of strain paths showing effect of ratios of 
FJF,, and FJF, on the shapes of the paths. Paths 3 and 7 are same as 
those in Fig. 5. For paths 3a-d, the ratios of F,IF,, are 1.090, 1.049, 
1.013 and 1.010, respectively; Fly and FYI are same as for path 3 
(equation A3). For paths 7a-d, the ratios of F,,IF, are 1.097, 1.051, 
1.013 and 1.010, respectively; Fxy and Fyx are same as for path 7 

(equation A7). 

Similarly, if the ratio of F,,IF,, increases, path 7 in Fig. 5 
will change to paths 7a and 7b (Fig. 9); if the ratio 
decreases, path 7 will change to paths 7c and 7d (Fig. 9). 

None of the progressive strain paths illustrated on 
Figs. 5, 8 and 9 crosses the plane strain path (path 1, 
Figs. 5,8 and 9), from the flattening to the constrictional 
field or vice versa, for low values of either In a or In b, a 
requirement that would be necessary for a strain path for 
our strain data. It appears, therefore, that our strain 
data cannot be explained through a progressive shear 
model like those presented here. The reason for this is 
probably that the rocks within the shear zone were 
involved in a progressive strain of variable kinematics 
during the deformation. We have not pursued forward 
modelling further, because we have no means by which 
to choose among these various possibilities. 

Simple shear combined with extension parallel to the 
coordinate axes 

An alternative approach to this problem is based on 
the mode of deformation, which is frequently observed 
from field studies (Ramsay & Graham 1970, Ramsay 
1980, Sanderson 1982). Since displacement along the 
slickenline direction is predominant in shear zones 
bounded by parallel planes of relatively large extent, 
shear strain (y,) along y, in the plane normal to x, is 
small compared with unity (Ramsay & Graham 1970, 
Ramsay 1980, Sanderson 1982), and, to a first approxi- 
mation, it can be neglected. This leads to Fyx = 0, and 
hence Vyx cos w, - VYY sin 0, = 0 (see equation 13). We 
then have the relationship tan w, = V,,,lV,,,,. Substituting 
w, into equation (13)) the F tensor can be determined by 
the left stretch tensor V alone. F and R tensors for each 
domain were calculated in this way and they are shown 
in equations (15) and (16): 
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Fig. 10. Stereographic plot of principal axes of the strain ellipsoids 
from domains 1, 2 and 3. Open squares, triangles and circles: long, 
intermediate and short axes of the calculated strain ellipsoids (derived 

using the F tensors in equation 15); other symbols as for Fig. 3. 

1.5891 0.8758 0.0000 

F(l) = 0.0000 0.5422 0.0000 (Isa) 
0.0000 0.0000 1.1807 

1.3460 1.3518 0.0000 

0.0000 0.5940 0.0000 (15b) 
0.0000 0.0000 1.2510 

0.6616 8.1025 0.0000 

0.0000 2.7687 0.0000 (15c) 
0.0000 0.0000 0.5511 

0.9250 0.3801 0.0000 

-0.3801 0.9250 0.0000 (16a) 
0.0000 0.0000 1.0000 

0.8205 0.5717 0.0000 

Rc2) = -0.5717 0.8205 0.0000 (16b) 
0.0000 0.0000 1.0000 

( 
0.3899 0.9209 0.0000 

Rc3) = -0.9209 0.3899 0.0000 (16~) 
0.0000 0.0000 1.0000 

where the superscripts show the domain numbers. 
The strain ellipsoids for the three domains were calcu- 

lated based on the F tensors in equation (15) (see Table 2 
and Fig. 10). Errors in values of the corresponding 
principal axes of the observed and calculated strain 
ellipsoids are all less than 3% (Table 2) and angles 
between the corresponding principal axes are less than 
10” in domain 1 and 2” in domains 2 and 3 (Table 2 and 
Fig. 10). This indicates that the errors from the assump- 
tion that components F,,, F,, Fyz and Fz,, equal zero are 
not significant. The strongest support for the validity of 
the assumption comes from the values of V,,, V,, Vyz 
and Vzy (equation 10) calculated from the strain data. 
Since these values are all much less than unity, and since 
they are the sole contributors to the values of F,,, F,,, 

Fyz and Fzy (equation 12), these components of F could 
not be large. 

Two-dimensional polar Mohr circles of the F tensors 
for domains 1 (equation 15a), 2 (equation 15b) and 3 
(equation 15~) are plotted in Figs. 11, 12 and 13, respec- 
tively. It can be seen from Figs. 11-13 that the defor- 
mation in the shear zone is predominantly in the x,-y, 
plane. Passing from domain 1 to domain 2 there is a 
slight increase in the deviatoric character of the strain in 
x,-y, and in the rigid-body rotational angle w, (see also 
equation 16, where R, = sin 0,). Passing from domain 2 
to domain 3 there is, however, a very large increase in 
both. In the y,-z, plane there is only minor deviatoric 
strain and in the z,-X, plane almost none. These charac- 
teristics are similar to those of progressive simple shear, 
but in true simple shear there is only one set of lines 
(parallel to the shear zone) that does not rotate, so that 
the eigenvectors (with unity eigenvalues) in the x,-y, 
plane coincide and the Mohr circle is tangential to the 
reference axis. This condition is not satisfied for any of 
the domains (see Figs. 11-13); their Mohr circles in x,-y, 
cut the reference axis, indicating that there was a com- 
ponent of flattening onto the shear plane in this region 
and that the shear zone is then, broadly speaking, 
transpressional. The dextral, transpressive character of 
the shear zone is consistent with other geological struc- 
tures observed in the region (Zhang & Hynes 1994). 

IMPLICATIONS FOR DISPLACEMENT ACROSS 

THE SHEAR ZONE 

F tensors for the three domains were derived by 
assuming that there had been no shear strain in the 
direction parallel to the pole to the shear zone on the 
plane normal to the slickenline (Fyx = 0). The coordi- 
nate axes of shear space after deformation x’(F,,, 0,O) 
and ~‘(0, 0, F,,) are parallel to their corresponding initial 
axes x(1, 0, 0) and ~(0, 0, 1). The F tensor therefore 
provides direct estimates of the strain on planes that 
were approximately parallel to the boundaries of the 
domains throughout the deformation, and the magni- 
tudes of the diagonal terms correspond approximately to 
the longitudinal strains (1 + ei) in planes parallel to these 
boundaries. Thus, it can be seen (equation 15) that in 
domains 1 and 2 there was considerable stretching paral- 
lel to the boundaries (F,,, F,, > 1) and shortening 
perpendicular to them, but the opposite is true in 
domain 3. While this difference may be accentuated by 
an overestimate of the eccentricity of the strain ellipsoid 
in domain 3, its existence is not in doubt. It is clear that 
such a marked strain discontinuity requires that the 
kinematics changed across the boundary between 
domains 2 and 3 during the progressive deformation and 
that the boundary was not coherent on the scale of tens 
of metres. This observation is consistent with the brittle- 
ductile character of the shear zone, especially along the 
boundary zone between domains 2 and 3. This strain 
discontinuity may therefore indicate a switch of kinema- 
tics from transpression to transtension (see below) dur- 
ing the progressive deformation. 
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Fig. 11. Polar Mohr circles for domain 1 in (a) x,-y,, (b) ys-&, (c) G-X, 
planes in shear space. The reference axis represents directions of non- 
rotation in Mohr space. The shaded area represents the deformed unit 
square in the plane. Solid square represents the anchor point of the 
deformed pole to the shear zone in both Mohr space and shear space; 
solid circles (on the reference axis): the eigenvectors of the two- 
dimensional F tensor in the plane; S, and o: stretch and rotational 
angle of a line; /? and /3’: the orientation of a line with respect to the 
shear zone (the slickenline direction) in the strained and unstrained 
states, respectively; St and Sz: maximum and minimum principal 
stretches, respectively, in the plane; w,, w, and w,,: rigid-body ro- 
tational angles about axes 4, X, and y,, respectively. (See Simpson & 
De Paor, 1993, for more detailed description of the polar Mohr circle). 

The total amount of shortening normal to the bound- 
aries across domains 1 and 2 is about 507 and 137 m, 
respectively (the shortening across a domain is equal to 
(l/F,, - 1) times the final width of the domain (for the 
values of FYY see equations 15a & b)), and the total 
extension normal to the shear plane across the domain 3 
is about 64 metres (the extension across a domain is 
equal to (1 - l/F,,) times the final width of the domain 
(for the value of Fyy see equation 15~)). Total shortening 
normal to the shear zone is therefore 580 m over 1480 m, 
about 39% shortening. Cumulative dextral displace- 
ment along the shear zone is about 1700 m (969 m in 
domain 1,455 m in domain 2 and 293 m in domain 3, the 
displacement across a domain is equal to (Fxy/Fyy) times 
the final width of the domain (for the values of Fxy and 
Fyy see equations Isa-c)), which represents a lower limit 
for the displacement since there may have been some 
rigid-body translation between domains 2 and 3, and the 
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Fig. 12. Polar Mohr circles for domain 2 in (a) q-y,, (b) ys-z,, (c) G-X, 
planes in shear space. Legend as for Fig. 11. 
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Fig. 13. Polar Mohr circles for domain 3 in (a) q-y,, (b) y,-z,, (c) z~-x, 
planes in shear space. Legend as for Fig. 11. 
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amount of translation within the shear zone to the west 
of domain 3 is undetermined. 

DISCUSSION AND CONCLUSIONS 

Because fabrics in many natural shear zones are 
approximately symmetric about the plane common to 
the slickenline or stretching lineation and the pole to the 
shear plane, shear strains l/x*, yrX, yyr and yry are thought 
to be negligible in most cases. This geometrical con- 
dition requires that the components F,,, F,,, Fyz and Fzy 
of the position-gradient tensor must be zero. Strain 
analysis of deformed volcanic fragments from a shear 
zone in north-central British Columbia demonstrates 
that the errors arising from this assumption are negli- 
gible. Consequently, the position-gradient tensor is 
simplified to one which contains only five non-zero 

components. 

Analysis of progressive strain may be used to deter- 
mine the position-gradient tensor, provided defor- 
mation progresses under constant kinematics. The strain 
data obtained from our study area are incompatible with 
these conditions, presumably reflecting a change in the 
kinematics across the boundary between domains 2 and 
3 or non-steady-state flow during the deformation. 

An alternative method of determination of the 
position-gradient tensor from conventional strain data 
is based on the assumption that F,__ is negligible. This is 
valid for parallel-sided shear zones for which the kine- 
matics are dominated by that for simple shear or simple 
shear combined with extension along the coordinate 
axes of shear space. It is clearly violated in ‘general 
shear’, in the sense of De Paor (1983) and Simpson & De 
Paor (1993), where the shearing falls into either the sub- 
or super-simple shear field. The assumption Fyx = 0 
overestimates the rotational angle w, for sub-simple 
shear and underestimates the angle o, for super-simple 
shear. It should therefore be used cautiously in regions 
in which such a regime is suspected. 

As discussed above, the assumptions that Fxz, F,,, F,,* 
and Fzy are negligible are probably valid for many shear 
zones in nature. With these assumptions the position- 
gradient tensor F can be uniquely determined from the 
left stretch tensor V, which can be obtained by conven- 
tional strain analysis techniques. The deformation and 
rotation of lines and planes can then be readily studied 
either by tensor operations or by polar Mohr circle 
representations. As illustrated in this paper, once the F 
tensor is known, other features of the deformation, such 
as displacement on the boundaries or cumulative dis- 
placements across deformed zones, can be determined. 
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Incremental Fi tensors for the strain paths of Fig. 5 are as follows: 

RI’) i 1.0000 0.0600 0.0000 = 0.0000 1.0000 0.0000 (Al) 

0.0000 0.0000 1.0000 

1 

Fi2) 1.0057 0.0593 0.0000 = 0.0000 0.9887 0.0000 (A21 

0.0000 o.OOOo 1.0057 

Fi7’ 0.9944 0.0597 0.0000 = 
0.0000 0.9944 0.0000 

0.0000 0.0000 1.0114 

(A7) 

Ff3) 1.0070 0.0594 0.0000 = o.OOOo 0.9900 0.0000 (A81 

o.OoOO 0.0000 1.0030 

F(s) = I ( 0.9930 0.0606 0.0000 o.oooo 1.0100 0.0000 \ (A91 

Fi3’ 1.0057 0.0603 0.0000 = \o.OOOO 0.0000 0.9970 / 
0.0000 1.0057 0.0000 

(A31 

0.0000 0.0000 0.9887 where the superscripts show the path numbers. 


